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• Upwind and downwind emissions dur-
ing the last 6 years were adjusted with 
TEA. 

• The adjusted downwind emissions 
reflect upwind emission changes. 

• NMBs of CO, NOx, and SO2 concentra-
tions were improved ±114 % to ±10 %. 

• Upwind CO & SO2 emission changes 
decreased the downwind concentrations 
by 21 & 14 %. 

• The emission decrease rates in both 
areas were 2–7 %/year during the last 3 
years.  
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A B S T R A C T   

It is challenging to estimate local emission conditions of a downwind area solely based on concentrations in the 
downwind area. This is because air pollutants that have a long residence time in the atmosphere can be trans-
ported over long distances and influence air quality in downwind areas. In this study, a Two-step Emissions 
Adjustment (TEA) approach was developed to adjust downwind emissions of target air pollutants with surface 
observations, considering their long-range transported emission impacts from upwind areas calculated from air 
quality simulations. Using the TEA approach, CO, NOx, and SO2 emissions were adjusted in China and South 
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Transported impact 
Surface observations 

Korea between 2016 and 2021 based on existing bottom-up emissions inventories. Simulations with the adjusted 
emissions showed that the 6-year average normalized mean biases of the monthly mean concentrations of CO, 
NOx, and SO2 improved to 0.3 %, − 2 %, and 2 %, respectively, in China, and to 5 %, 7 %, and 4 %, respectively, 
in South Korea. When analyzing the emission trends, it was estimated that the annual emissions of CO, NOx, and 
SO2 in China decreased at a rate of 7.2 %, 4.5 %, and 10.6 % per year, respectively. The decrease rate of 
emissions for each of these pollutants was similar to that of ambient concentrations. When considering upwind 
emission impacts in the emissions adjustment, CO emissions increased by 1.3 %/year in South Korea, despite CO 
concentrations in the country decreasing during the study period. During the study period, NOx and SO2 emis-
sions in South Korea decreased by 3.9 % and 0.5 %/year, respectively. Moreover, the TEA approach can account 
for drastic short-term emission changes (e.g., social distancing due to COVID-19). Therefore, the TEA approach 
can be used to adjust emissions and improve reproducibility of concentrations of air pollutants suitable for health 
studies for areas where upwind emission impacts are significant.   

1. Introduction 

The ambient concentrations of PM2.5, SO2, and NOx in Northeast Asia 
have declined recently (Ali et al., 2023; Bae et al., 2023; Lee et al., 2022; 
Zhai et al., 2021). Previous studies reported that this downward trend 
resulted from emission reductions by strict emission control policies and 
social issues such as the COVID-19 pandemic (Bae et al., 2021; Hasnain 
et al., 2023; Yao et al., 2023; Zhang et al., 2023). These studies have 
reached their conclusions by examining the impact of emission changes 
on air pollutant concentrations indirectly by excluding non-emission 
impacts (e.g., meteorology). However, direct analysis of emission 
changes is non-trivial and challenging due to uncertainties in actual 
emission estimation. 

Actual emissions for a specific year are often represented in a 
bottom-up emissions inventory (EI) that is updated regularly (e.g., 
yearly). However, some emission sources may be missing from EIs 
during the data collection process (Ou et al., 2018). For example, in 
Northeast Asia, CO emissions have been significantly underestimated 
because of missing sources (Gaubert et al., 2020; Park et al., 2021; Qu 
et al., 2022). In addition, inaccurate emission factors and insufficient 
activity data may lead to uncertainties in the emissions data (Streets 
et al., 2003; Zhao et al., 2011). Another limitation of bottom-up EIs is 
that it takes time to collect and verify emissions data, so there is a lag 
between the year represented by an EI and the year when the EI is 
published. For example, the inventory years of the latest public version 
of the Multi-resolution Emission Inventory for China (MEIC) and the 
Regional Emission Inventory in Asia version 3 (REASv3), the two most 
up-to-date and available EIs in Northeast Asia, are 2017 and 2015, 
respectively (Zheng et al., 2018; Kurokawa and Ohara, 2020). However, 
it is difficult to estimate emission changes with these EIs in recent years 
(e.g., 2020 and 2021) because of the rapid changes in Northeast Asia, 
including anthropogenic emission changes due to the establishment of 
social distancing guidelines during the COVID-19 outbreak (Uno et al., 
2020; Zheng et al., 2018; Han et al., 2020; Huang et al., 2021; Itahashi 
et al., 2022; Kang et al., 2020). Furthermore, more intricate changes in 
anthropogenic emissions are projected for Northeast Asia, as the 
imperative for emission reductions to improve air quality and mitigate 
climate change is undeniable (Chishti and Patel, 2023; Li et al., 2023; 
Shi et al., 2023; Chishti et al., 2021). These bottom-up EIs may be 
suitable for modeling study on past periods, but using them to under-
stand recent air quality is challenging. 

To overcome the aforementioned limitations of bottom-up EIs, pre-
vious studies have attempted to adjust emissions with satellite obser-
vations (Bae et al., 2020b; Elguindi et al., 2020; Emmons et al., 2004; Fu 
et al., 2022; Gaubert et al., 2020; Salmon et al., 2018; Qu et al., 2022). 
However, satellite observation data are available only for daylight 
hours, excluding thermal radiation-based information such as fire 
emissions. Moreover, satellite data have their own limitations such as 
missing data due to clouds, in addition to limited spatiotemporal reso-
lution (Barré et al., 2021; Zoogman et al., 2011). Due to these limita-
tions, some studies have attempted to adjust emissions using surface 
observed concentrations and simulated concentrations with bottom-up 

EIs as an alternative (Bae et al., 2020a; Bergamaschi et al., 2000; Feng 
et al., 2020; Kasibhatla et al., 2002; Wang et al., 2013). However, in 
these studies, the emission impact from upwind areas was not accounted 
for when estimating local emissions based on concentrations. 

In a downwind area, in addition to its own local emissions, the 
concentrations of air pollutants can also be affected by emissions from 
upwind areas depending on meteorological conditions (Itahashi et al., 
2022; Kim et al., 2021a; Uno et al., 2020). The concentrations of air 
pollutants with a short residence time, such as NOx, are mainly affected 
by local emissions, while those with a long residence time, such as CO, 
stay in the atmosphere for several months and can be transported long 
distances. Therefore, uncertainty in upwind emissions should be 
considered prior to adjusting emissions in a downwind area. Similarly, 
when long-term emission trends in a downwind area are estimated, 
those for upwind areas should be considered. Inverse modeling may be 
used to solve this problem by adjusting emissions to improve model 
performance in simulating concentrations of both the upwind and 
downwind areas simultaneously (Lee et al., 2011; Yumimoto et al., 
2014). However, the calculation process is complicated, and various 
emission adjustment factors that do not match reality may be included 
(Brioude et al., 2011; Mendoza-Dominguez and Russell, 2000). 

In this study, the Two-step Emissions Adjustment (TEA) approach 
was developed and applied. TEA is an emission adjustment method that 
could update emissions in downwind as well as upwind areas. Using the 
TEA approach, the long-term trends of emissions in China and South 
Korea, designated as upwind and downwind areas respectively, were 
analyzed for 2016–2021 including the COVID-19 outbreak period. In 
addition, the emissions adjusted from two different EIs with the TEA 
approach were compared to demonstrate that the proposed approach 
can estimate a posteriori (or adjusted) emissions to simulate air 
pollutant concentrations comparable to the observations. 

This novel approach enables us to estimate emissions in downwind 
areas by considering the long-range transport (LRT) of air pollutants. 
The ability to adjust emissions for air pollutants with long residence 
times distinguishes it from previous research. The TEA approach is an 
effective method that allows for the rapid estimation of realistic emis-
sions using surface observations which will be helpful for policymakers 
when developing regional and local air pollution control plans. Since air 
pollutant concentrations simulated with adjusted emissions are much 
more consistent with the observations, the TEA-based modeling results 
will be useful for health studies, as reported by Ma et al. (2016). 

2. Methodology 

The source-receptor relationships between target air pollutants and 
concentrations of those air pollutants in an area were established with 
photochemical air quality model simulations and surface observations in 
upwind and downwind areas. In this study, China and South Korea were 
chosen as the target areas for emission adjustments based on the TEA 
method. Air pollutant concentrations in China have significantly 
decreased recently due to the implementation of strict emission control 
policies and the impact of social distancing in response to COVID-19 

E. Kim et al.                                                                                                                                                                                                                                     



Science of the Total Environment 907 (2024) 167818

3

(Kim et al., 2021a, b; Uno et al., 2020; Zhang et al., 2023). In addition, 
China's emissions of air pollutants are anticipated to continue to 
decrease, supported by greenhouse gas emission reductions (Chishti and 
Patel, 2023; Li et al., 2023). These changes in China's emissions have 
also had an impact on the air pollutant concentrations in neighboring 
areas, including South Korea (Bae et al., 2021; Uno et al., 2020). 
Therefore, it was determined that the application of TEA would be 
suitable for emission adjustments in both China and South Korea. 
Geographically, China and South Korea are in the westerly zone. The 
Yellow Sea, where there are few anthropogenic emission sources, is 
located between the two countries. The target pollutants selected in this 
study are CO, NO2, and SO2. The TEA approach in which upwind 
emissions are adjusted prior to adjusting downwind emissions is intro-
duced in Section 2.1. For the emissions adjustment, an air quality 
simulation was conducted based on existing EIs for the upwind and 
downwind areas first (Sections 2.2–2.3). Then, emissions were adjusted 
using the surface observations (Section 2.4). Last, the validity of the TEA 
approach was assessed by comparing adjusted emissions based on two 
different unadjusted EIs (Section 2.5). Further details are explained in 
each section. 

2.1. Two-step emissions adjustment (TEA) approach 

The TEA approach adjusts emissions in both upwind and downwind 
areas by considering the LRT of air pollutants. Fig. 1 shows how the TEA 
approach is different from the non-TEA adjustment method that adjusts 
downwind emissions without taking the impact of LRT into account. 
Over- and under-estimation of downwind emissions in a non-TEA 
method is plausible due to uncertainties in transported impacts from 
upwind areas. Biases in modeled concentrations in a downwind area can 
be reduced by adjusting the local emissions. However, when upwind 
emissions are updated — thus changing the impact to the downwind 
area — downwind emissions should be recalculated. 

The TEA approach updates the influence of LRT on simulated 
downwind concentrations prior to the adjustment of downwind emis-
sions. First, the emissions of China (the upwind area in this study) were 
adjusted using surface observations (Section 2.4). Then, the emissions of 
the target pollutants in South Korea (i.e., the downwind area) were 
adjusted by utilizing the same methodology as the upwind area. In doing 

so, the adjusted upwind impact can be included when adjusting down-
wind emissions. 

This approach is similar to previous studies (Bae et al., 2020b; 
Elguindi et al., 2020; Gaubert et al., 2020; Qu et al., 2022; Xing et al., 
2022) in such a way that bottom-up emissions were constrained in ob-
servations. However, a major difference in the TEA approach when 
compared to previous approaches is that upwind emission impacts (i.e., 
LRT) were considered in downwind areas when adjusting emissions 
from the downwind area. Another major difference is that previous 
studies mostly relied on satellite data, which are limited to daytime 
information when developing top-down emissions. In contrast, this 
study utilized long-term hourly resolved surface CO, NOx, and SO2 
observational data, covering not only daytime but also nighttime 
periods. 

The TEA approach is useful for adjusting emissions but still has 
limitations on adjustments in upwind areas, especially boundary areas 
of the outer domain as the concentrations over grid cells can be influ-
enced by regional background conditions which are not adjustable in 
this approach. In addition, the adjusted emissions can be influenced by 
uncertainties in the input data such as meteorology and emissions, and 
the chemical transport model itself. Considering uncertainties inherent 
in the emissions adjustment method, the long-term trend of emissions 
was highlighted in the downwind area rather than attempting to 
quantify the emission rates. Based on this approach, changes in the long- 
term CO, NOx, and SO2 emissions in the upwind and downwind areas 
were estimated from 2016 to 2021. The study period was divided into 
two shorter periods: the pre-COVID-19 period (P1: 2016–2018) and the 
post-COVID-19 period (P2: 2019–2021). In addition, the impact of 
emission changes in the upwind area on air quality in the downwind 
area was evaluated (i.e., air quality improvements in South Korea owing 
to China's emission reduction). The detailed configuration of the sce-
nario used in this study is presented in Table S1. 

2.2. Emissions inventories 

The Korea–United States Air Quality (KORUS) v5 from Konkuk 
University (Woo et al., 2020) and Clean Air Policy Support System 
(CAPSS) 2017 from the National Air Emission Inventory and Research 
Center (NAIR) were used as the EIs for the a priori emissions for China 

Fig. 1. Illustrative comparison of Two-step Emissions Adjustment (TEA) and non-TEA approaches. It was assumed that the bias of the simulated concentration was 
caused by the uncertainty of the a priori (i.e., unadjusted) emissions (Epriori). Based on this assumption, the a posteriori (i.e., adjusted) emissions (Eposteriori) were 
estimated to accurately simulate the observed concentrations. The β values that represent the emission-concentration conversion rate are explained in Section 2.4. 
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and South Korea, respectively. Chinese emissions of CO, SOx, and NOx 
were 168.7 Tg/year, 29.9 Tg/year, and 21.2 Tg/year, respectively, as 
reported in the Comprehensive Regional Emissions inventory for At-
mospheric Transport Experiment (CREATE) 2015. At the same time, 
KORUS v5 reported that Chinese emissions of CO, SOx, and NOx were 
141.9 Tg/year, 13.3 Tg/year, and 22.5 Tg/year, respectively, in 2016. 
Meanwhile, MEIC 2017, the most up-to-date EI of China, reported that 
Chinese emissions of CO, SOx, and NOx were 136.2 Tg/year, 10.5 Tg/ 
year, and 22.0 Tg/year, respectively, in 2017 (Zheng et al., 2018). 
CREATE 2015 was also used for cross-validation of the TEA approach in 
Section 3.5. 

In CAPSS 2017, the emissions of CO, SOx, and NOx of South Korea 
were 0.8 Tg/year, 0.3 Tg/year, and 1.2 Tg/year, respectively (Choi 
et al., 2021). In South Korea, the three main sources of CO emissions 
include road, non-road mobile, and biomass burning, accounting for 78 
% of the total emissions. The main sources of SOx emissions are energy 
production, industrial processes, and manufacturing, accounting for 81 
% of the total emissions. NOx emissions mainly originate from road and 
non-road mobile sources, manufacturing, and energy production, ac-
counting for 86 % of the total emissions. The emission densities (in tons 
per year per km2) of CO, NOx, and SO2 in China are 1.8, 0.2, and 0.5 
times those in South Korea, respectively. 

2.3. Air quality simulation 

Meteorological input data for the air quality simulation were pre-
pared in two steps. First, the Weather Research and Forecasting model 
(WRF; Skamarock et al., 2008) v3.9.1 was run with initial and boundary 
conditions from the Final Analysis data (FNL) provided by the National 
Center for Environmental Prediction (NCEP). Second, because the 
Community Multi-scale Air Quality model (CMAQ) v5.3.1 was used as 
the chemical transport model, the WRF outputs were converted into 
CMAQ-ready meteorological input files using Meteorology-Chemistry 
Interface Processor (MCIP) v4.3. Hourly weather simulation results 
were verified by comparing them with observed data from 82 observa-
tion stations of the Meteorological Assimilation and Data Ingest System 
(MADIS) in China and South Korea. The EIs were processed using the 
Sparse Matrix Operator Kernel Emission model (SMOKE; Benjey et al., 
2001) v3.1. Biogenic emissions were calculated using the Model of 
Emissions of Gases and Aerosols from Nature (MEGAN; Guenther et al., 
2006) based on vegetation data. The results of the hemispherical model 
of CMAQ v5.3 beta2, provided by the United States Environmental 
Protection Agency (U.S. EPA, 2020), were used as boundary conditions. 

Concentrations of air pollutants during the study period were 
simulated with CMAQ using the prepared meteorological dataset and 
unadjusted emissions. The detailed WRF and CMAQ configurations used 
in this study are presented in Table 1. As for the simulation areas (see 
Fig. 2), Northeast Asia, including China and South Korea, is included in 
Domain 1 while South Korea (the downwind area) is focused on Domain 
2. Boundary conditions for Domain 2 were extracted from the simulated 
results of concentrations for Domain 1. Modeling results for Domains 1 
and 2 were used to adjust the emissions in the upwind and downwind 
areas, respectively. 

For emissions adjustment and verification of simulated air quality 
concentrations, hourly observations from the China National Environ-
mental Monitoring Center (CNEMC), South Korean Air Monitoring Sta-
tion (AMS), and AirKorea (https://www.airkorea.or.kr) were used. 
Fig. 2 shows the locations of observation sites in this study. During 2016, 
the total number of monitoring stations available for China and South 
Korea was 1332 and 311, respectively. 

2.4. Emissions adjustment with surface observations 

In this study, it was assumed that the bias of the simulated concen-
tration was attributed to the uncertainty in the a priori emissions (Epriori). 
An emissions inventory selected can be the a priori emissions in this 
study. Under this assumption, the a posteriori emissions (Eposteriori) were 
estimated by adjusting Epriori with emission-concentration conversion 
rates (β) to accurately simulate the observed concentrations (Cobs). In 
previous studies, the β value of a target area of certain pollutants was 
assumed to be 1, and the ratios of observed and simulated concentra-
tions (Cpriori) were applied directly to the a priori emissions (Bae et al., 
2020a; Kim et al., 2021b). As the concentration over a downwind area is 
affected not only by its own emissions but also by emissions from sur-
rounding areas, β values may vary by period, area, the residence time of 
a pollutant, and background concentrations. Lamsal et al. (2011) 
attempted to estimate more realistic β values by calculating the 
emission-concentration sensitivity with 15 % perturbed emissions in the 
target area. Meanwhile, Kim et al. (2021b) calculated the β values for 
each specific region and time. 

This study adopted the approach described by Kim et al. (2021b) to 
calculate β values by each area and month. To calculate the local 
sensitivity of air pollutant concentrations to the emissions changes, 
perturbed emissions (Esens) were set by multiplying the a priori emissions 
of CO, NOx, and SO2 with the corresponding constant values of 1.5, 1.3, 
and 0.7. These constants were calculated by averaging the ratios of 
observed concentrations to simulated concentrations with the unad-
justed emissions over time. Then, the a posteriori emissions were 
calculated as a sum of the a priori emissions and the ratio of the dif-
ference between the observed concentration and the simulated con-
centration with Epriori, (Cobs− Cpriori), and the β value (Eqs. (1) and (2)). 

βs,t =
(
Csens − Cpriori

)

s,t

/(
Esens − Epriori

)

s,t (1)  

Eposteriori = Epriori +
[(

Cobs − Cpriori
)

s,t

]/
βs,t (2)  

where 
βs,t: Emission-concentration conversion rate at an area s over a time 

period t 
Csens: Simulated concentration of the air pollutant using Esens 
Cpriori: Simulated concentration of the air pollutant using Epriori 

Esens: Perturbed emissions of the air pollutant to estimate emission- 
concentration sensitivity 

Epriori: A priori emissions of the target air pollutant from an area s 
Eposteriori: A posteriori emissions of a target air pollutant from an area s 
Cobs: Observed concentration of the air pollutant 
Subsequently, the monthly β values were calculated to estimate 

monthly emission variations in 309 prefectures and 17 provinces for 
China and South Korea, respectively. The size of each prefecture in 
China and province in South Korea ranges from 1000 to 27,000 km2 and 
from 500 to 19,000 km2, respectively. It should be noted that air quality 
monitoring stations are distributed unevenly so that one modeling grid 
cell may have multiple stations while some modeling grid cells may not 
have any stations. Therefore, comparisons between observed and 
simulated concentrations at each monitor location can cause many-to- 
one or one-to-many matching, potentially leading to uncertainties in 
model-observation comparisons depending on the number of monitors 
in each modeling grid cell. To reduce this type of uncertainty, this study 

Table 1 
Model configurations and input data for air quality simulations.   

Options Module 

WRF v3.9.1 
(Meteorology) 

Microphysics WSM6 (Hong and Lim, 2006) 
Longwave & shortwave 
radiation 

RRTMG (Iacono et al., 2008) 

PBL scheme YSU (Hong and Lim, 2006) 
CMAQ v5.3.1 

(Chemistry) 
Chemical mechanism SAPRC07 (Hutzell et al., 

2012) 
Chemical solver EBI (Hertel et al., 1993) 
Aerosol module AERO6 (Simon and Bhave, 

2012)  
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adopted the approach used in Bae et al. (2020a) where the β values were 
calculated first by averaging observed data from observational stations 
in one grid and then averaging the observed and simulated concentra-
tions for each prefecture or province. If there are no observation sites in 
a province, a monthly β value of 1 was assumed for that province. 
Generally, observation sites are located in highly polluted areas, so it is 
believed that the observed data in each province can accurately repre-
sent the concentration levels of that province. 

2.5. Validation of the emissions adjustment 

To show the effectiveness of the emissions adjustment approach 
proposed in this study, two validation steps were taken. First, in addition 
to KORUS v5 (Epriori), another EI, CREATE 2015 (E*

priori), was adjusted 
with the TEA approach for China to examine how the emission 
constraint with the surface observations can generally be applied with 
different EIs. Secondly, emissions adjusted with the TEA and non-TEA 
approaches were compared for the downwind area. The correlation of 
adjusted emissions between ETEA and E*

TEA, which represent TEA-based 
adjusted emissions for Epriori and E*

priori, in South Korea was compared 
to the correlation of adjusted emissions between Enon− TEA and E*

non− TEA, 
which represent non-TEA-based adjusted emissions for Epriori and E*

priori, 
respectively. 

3. Results and discussion 

3.1. Model performance evaluation of meteorological factors 

The meteorological model performance was evaluated with obser-
vational data from China and South Korea (Fig. S1). During the study 
period, the average 2-m air temperatures in China and South Korea were 
around 15.0 ◦C. Simulated 2-m temperatures showed biases around 
− 1.3 ◦C. The Index of Agreement (IOA) and the Pearson correlation 
coefficient (R) for the monthly average 2-m air temperatures were 0.99 
and 1.0, respectively. The average value of observed 10-m wind speeds 
was 2.9 m/s during the study period. Simulated 10-m wind speeds 
showed biases around 0.3 m/s. The IOA and R values for the monthly 
average 10-m wind speeds were 0.6 and 0.7, respectively. 

3.2. Concentration changes after emission adjustments 

To validate the resultant emissions estimated with the TEA approach, 
simulated concentrations with and without the emission adjustment 
were compared with the observations. The Cpriori of NO2 and SO2 for 
2021 showed overestimation in China with normalized mean biases 

(NMBs) of 5.4 % and 193.3 % for NO2 and SO2, respectively. The Cpriori of 
NO2 and SO2 for 2021 in South Korea were similar to the Cobs. The 
resulting NMBs for NO2 and SO2 were − 0.8 % and − 0.1 %, respectively. 
On the other hand, the NMB of the Cpriori for CO in 2021 was negative at 
− 37.3 % and − 67.5 % in China and South Korea, respectively. This is 
consistent with other studies, that is, CO emissions in Northeast Asia are 
significantly underestimated in the bottom-up EIs (Park et al., 2021; Qu 
et al., 2022; Tang et al., 2019). 

In China, during 2016–2021, the average NMBs of the Cpriori were 
− 46 % and − 7 % for CO and NO2, respectively, while the average NMB 
for SO2 was 114 %. After the emissions adjustment, the NMBs for CO, 
NO2, SO2 were improved to 0.3 %, − 2 %, and 2 %, respectively. The R 
values were also improved after the emission adjustment from 0.70 to 
0.99 for CO, from 0.77 to 0.97 for NO2, and from 0.52 to 1.00 for SO2. 

In South Korea, the model performance was improved after the 
emissions adjustment. For CO, the period average NMBs were − 70 % 
without the adjustment (Cpriori), and 5 % after the emission adjustment 
(CTEA). For NO2, the period average NMBs were − 12 % without 
adjustment and 7 % after the second adjustment (i.e., upwind and 
downwind emission adjustment as shown in Fig. 1). When only the 
upwind emissions were adjusted, the period average NMBs for CO and 
NO2 concentrations (Cupwind only

TEA ) in the downwind area became − 57 % 
and − 11 %, respectively. It was noted that the model performance sta-
tistics for the NO2 simulations with and without the upwind emission 
adjustment were similar in South Korea. This may be due to the short 
residence time of NO2 that prevents it from traveling long distances from 
upwind to downwind areas (Lange et al., 2022; Beirle et al., 2011). For 
SO2, the period average NMB was − 19 % in Cpriori, and 4 % after the 
emissions adjustment while the NMB increased to 23 % when the up-
wind emissions were only adjusted. The recent significant decrease in 
SO2 emissions in the upwind area intensified the underestimation of SO2 

concentrations (Cupwind only
TEA ) in South Korea as shown in Fig. 3. However, 

the annual NMB of SO2 decreased after the downwind emissions were 
adjusted in the second step (CTEA in South Korea in Fig. 3). These results 
demonstrate the effectiveness of the TEA approach for adjusting emis-
sions of downwind areas to improve model performance. 

The simulated concentrations with a posteriori emissions were 
compared to the observed concentrations in Fig. 4. After the emissions 
adjustment, the simulated monthly average concentrations of CO, NO2, 
and SO2 in China in 2021 decreased by 33 %, 23 %, and 60 %, respec-
tively, compared to those in 2016 (Cupwind only

TEA in Fig. 4). This is similar to 
the rates of reductions in the observed concentrations, 34 %, 20 %, and 
59 % for CO, NO2, and SO2, respectively, indicating that the upwind a 
posteriori emissions (ETEA) appropriately reflected the changes in 
emissions in China. In particular, the steep decrease in NO2 

Fig. 2. Domains for air quality simulation and location of observation sites in China (left) and South Korea (right), as of 2016.  
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concentration during the COVID-19 lockdown in China in January 2020 
was well-reproduced, similar to the findings of Kim et al. (2021b). 

For Cpriori, the changes in concentration reflect only the changes in 
meteorological conditions as the same emissions were used regardless of 
the simulation year. The average annual Cpriori of CO, NO2, and SO2 in 
China in 2021 decreased by about 1 % compared to those in 2016 as a 
result of changes in meteorological conditions (red line in Fig. 4). Thus, 
it can be said that the recent decrease in the observed concentrations of 
air pollutants in China is mainly due to changes in emissions rather than 
in meteorology during the study period. Several studies have also re-
ported that Chinese emissions have decreased significantly in recent 
years (Bae et al., 2021; Zhai et al., 2019). 

In South Korea, C_TEA, with the adjusted emissions from both the 
upwind and downwind areas, is best at reproducing the changing trend 
in observed concentrations. The observed concentration of CO 

decreased by 12 % in 2021 compared to that in 2016, whereas the 
simulated CO concentration decreased by 20 % with Cupwind only

TEA and 10 % 
with CTEA. This means that changes in CO emissions in the upwind area 
reduced the concentrations by 21 % (= Cupwind only

TEA − Cpriori) in South 
Korea while the local emissions in the downwind area increased the 
concentration by 10 % (= CTEA − Cupwind only

TEA ) for the period. The simu-
lated NO2 concentration also decreased by 2 % with Cupwind only

TEA and 23 % 
with CTEA in 2021 compared to 2016, showing that the CTEA better 
reflect the change rate (− 22 %) in the observed concentration. This is 
because NO2 has a short residence time in the air as described above. It 
seems that the reduction rate of the NO2 concentration with CTEA was 
mostly due to changes in emissions in South Korea. The observed con-
centration of SO2 decreased by 36 % in 2021 compared to that in 2016, 
while the simulated concentration decreased by 18 % with Cupwind only

TEA in 
South Korea. It implies that changes in SO2 emissions in the upwind area 
reduced the concentrations by 14 % (Cupwind only

TEA - Cpriori) in the downwind 
area. The CTEA decreased by 26 % showing a lower change rate than the 
observed concentration change rate. It seems that the SO2 concentration 
with CTEA was underestimated in 2016 and overestimated in 2021 
(Figs. 3 and 4), resulting in a decrease in the change rate compared to the 
actual change in emission. 

The results in Figs. 3 and 4 indicated that in both China and South 
Korea, the simulated concentrations with a posteriori emissions better 
reproduced the observed concentrations and their trends of changes 
than those with a priori emissions. This confirmed the effectiveness of 
the proposed emissions adjustment approach. In addition, although not 
included as target pollutants in this study, it is possible to improve the 
estimation of downwind emissions of EC, a major component of PM2.5 in 
Northeast Asia, through the TEA approach. This is especially relevant 
considering the potential for LRT. 

3.3. Validation of the TEA approach 

The TEA approach was validated by comparing the a posteriori 
emissions for the two different EIs, Epriori and E*

priori. Before adjustment, 
the CO, NOx, and SO2 emissions from E*

priori (CREATE 2015) were rela-
tively higher than those of the Epriori (KORUS v5) by 17 %, 11 %, and 93 
%, respectively, in the upwind area (Fig. S2). After adjustment, the 
differences between ETEA, which represents the adjusted emissions for 
Epriori, and E*

TEA, which represents the adjusted emissions for E*
priori, were 

as minor as within ±10 % for all pollutants (CO = 10 %, NOx = 6 %, and 
SO2 = 8 %) in the upwind area. The correlation coefficients (R) between 
the adjusted monthly emissions were also improved, with values of 0.96 
(CO), 0.98 (NOx), and 1.00 (SO2), compared to the R-values before the 
adjustments (CO = 0.86, NOx = 0.83, and SO2 = 0.92). In addition, the 
simulated concentrations of all pollutants with the adjusted emissions 
(CTEA and C*

TEA) showed better agreement with the observed concen-
trations compared to those with a priori emissions as shown in Fig. S3. 
Thus, this convergence confirmed that the emission adjustment with the 
surface observations applied in this study can successfully constrain 
emissions to simulate air pollutant concentrations well-matched with 
the observations for different EIs as the a priori emissions. 

In South Korea (i.e., the downwind area), the convergence of the 
adjusted emissions based on the TEA approach was compared to that of 
the emissions based on the non-TEA approach. The relative differences 
between the Enon− TEA and E*

non− TEA were 2 %, 1 %, and 33 % for CO, NOX, 
and SO2, respectively (Fig. S4). On the other hand, the relative differ-
ences between the ETEA and E*

TEA were 4 %, 0 %, and 6 % for CO, NOX, 
and SO2, respectively. In addition, the correlation coefficient of SO2 

emissions between ETEA and E*
TEA (0.90) was higher than that between 

Enon− TEA and E*
non− TEA (0.84). It is presumed that a relatively small dif-

ference in CO emissions in the a priori emissions and a short residence 
time of NO2 in the atmosphere make insignificant differences in the a 

Fig. 3. The Normalized Mean Biases (NMB) of simulated concentrations for the 
selected air pollutants of CO, NO2, and SO2 in China (top) and South Korea 
(bottom) for each year of the study period (2016–2021). Each column shows 
NMB of (1) Cpriori; concentrations with a priori emissions (left), (2) Cupwind only

TEA ; 
concentrations with adjusted upwind emissions as the first step in the TEA 
approach (middle), and (3) CTEA; concentrations with the final adjusted emis-
sions in the TEA approach (right). CTEA is only available for South Korea 
because South Korea was designated as the downwind area. 

E. Kim et al.                                                                                                                                                                                                                                     



Science of the Total Environment 907 (2024) 167818

7

Fig. 4. Comparison of trends in concentrations of CO (top), NO2 (middle), and SO2 (bottom) in China (left) and South Korea (right) according to the emission 
adjustment: circles indicate observations, red lines denote simulations with a priori emissions (Cpriori), blue lines denote simulations with adjusted Chinese emissions 
(Cupwind only

TEA ), and the green lines denote simulations with adjusted emissions from both China and South Korea (CTEA). Each number represents the annual percentage 
change in 2021 compared to 2016. 

Fig. 5. Comparison of emissions of CO (left), NOx (middle), and SO2 (right) and their trends in China (top) and South Korea (bottom): Black circles represent a priori 
emissions, red and blue circles represent a posteriori emissions for the first half (P1) and the second half (P2) of the study period, respectively. The slope of each trend 
line indicates the annual emission change trend. The dotted line is the trend line for the entire period. The number (%/year) is the annual average rate of change in 
emissions, calculated based on each trend line. 
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posteriori emissions. 
The simulated concentrations with the adjusted emissions using the 

TEA approach (CTEA) showed higher agreement with the observed 
concentrations compared to the simulated concentrations with the 
adjusted emissions using the non-TEA approach (Cnon− TEA) (Fig. S5). For 
SO2, the NMBs were − 33 % and − 3 % for Cnon− TEA and CTEA, respec-
tively. The correlation coefficients with the observations were − 0.32 
and 0.94 for Cnon− TEA and CTEA, respectively. Therefore, the TEA 
approach is advantageous in adjusting emissions in a downwind area 
when long-range transport of air pollutants from upwind areas plays a 
significant role in determining air quality over a downwind area. 

3.4. Annual emissions and trends after the application of TEA 

The a posteriori emissions (i.e., ETEA) and their trends over time were 
analyzed in China and South Korea. As shown in Fig. 5, China's a pos-
teriori CO emissions in 2016 were 471.9 Tg/year, 3.5 times higher than 
the a priori emissions (136.5 Tg/year). In the same year, South Korea's a 
posteriori CO emissions were 11.3 Tg/year which is 14 times higher than 
the a priori emissions (0.8 Tg/year). This means that a priori CO emis-
sions in China and South Korea were underestimated, which was also 
reported by previous studies (Park et al., 2021; Qu et al., 2022). How-
ever, it should be noted that this study did not adjust emissions from 
North Korea. If emissions from North Korea were adjusted, the under-
estimation of emissions in China and South Korea would have been 
alleviated because recent studies (i.e., Chong et al., 2023; Jung et al., 
2022) showed that CO and NOx emissions from North Korea were 
underestimated. 

In China, the annual average a posteriori CO emissions decreased at a 
rate of 7.2 %/year from 2016 to 2021, resulting in a 33 % reduction in 
2021 compared to 2016. When dividing the study period into two parts 
(i.e., the pre-COVID-19 period (P1: 2016–2018) and the post-COVID-19 
period (P2: 2019–2021)), Chinese a posteriori CO emissions decreased 
more rapidly during P1 (− 7.2 %/year) than P2 (− 4.4 %/year). The 
annual average a posteriori CO emissions of South Korea increased 
slightly at a rate of 1.3 %/year over the entire period, resulting in a 7 % 
increase in CO emissions in 2021 compared to 2016. Meanwhile, CO 
emissions increased during P1 (3.2 %/year) but decreased during P2 
(− 1.5 %/year). The trend of changes in observed CO concentrations in 
the upwind and downwind areas may appear similar since CO is a 
pollutant that travels over long distances. However, the trend of CO 
emission change in China (the upwind area) appeared to be the opposite 
of that in South Korea (the downwind area) during P1 in this study. This 
implies that estimating emission changes in the downwind area solely 
based on observations is difficult unless the impacts of upwind emissions 
in the downwind area are considered. 

In 2016, China's a posteriori NOx emissions were 34.4 Tg/year, 1.5 
times the a priori emissions (22.5 Tg/year). In South Korea, it was 
estimated to be 1.7 Tg/year which is 1.5 times the a priori emissions (1.1 
Tg/year). This means that a priori NOx emissions might be under-
estimated, which was also suggested by Goldberg et al. (2019). The 
annual trends of a posteriori emissions showed that Chinese NOx emis-
sions decreased by 4.5 %/year on average over the period, which is 19 % 
lower in 2021 compared to 2016. This emission reduction occurred 
more sharply during P2 (− 6.1 %/year) than P1 (− 1.7 %/year). Xu et al. 
(2023) and Zheng et al. (2018) have reported a downward trend of NOx 
emissions in China. South Korea's a posteriori NOx emissions decreased 
by an average of 3.9 %/year over the study period, which is 18 % lower 
in 2021 compared to 2016. The emission reduction occurred more 
rapidly during P2 (− 6.8 %/year) than during P1 (− 3 %/year), like in 
China. During P2, the reduction rates of NOx emissions in South Korea 
were following the same trend as China, possibly due to the impact of 
social distancing during the COVID-19 outbreak and strong emission 
regulations to improve air quality (Kang et al., 2020; Lv et al., 2023). 

Chinese a posteriori SO2 emissions were 14.6 Tg/year in 2016, 
showing little difference from the a priori emissions (13.3 Tg/year) 

compared to other pollutants. However, the emissions decreased by 
− 10.6 %/year on average over the period, resulting in a 52 % reduction 
in 2021 compared to 2016. This significant reduction in emissions ap-
pears to be the result of the implementation of SO2-focused reduction 
policies such as those in the 13th Five-Year Plan in China (Jiao et al., 
2017). Zheng et al. (2018) reported a 59 % decrease in SO2 emissions in 
China in 2017 compared to 2013. In this study, the rate of decrease was 
slower during P2 (− 6.4 %/year) when compared to P1 (− 16.1 %/year). 
Meanwhile, South Korea's a posteriori SO2 emissions were estimated to 
be 0.35 Tg/year that is higher than a priori emissions (0.26 Tg/year). 
The a posteriori SO2 emissions increased during P1 (7.1 %/year) but 
decreased again during P2 (− 4.7 %/year), resulting in a similar level of 
SO2 emissions in 2016 and 2021 in South Korea. Considering the results 
shown in the previous section where the SO2 concentrations in South 
Korea in 2021 were overestimated by approximately 8.6 % with a pos-
teriori emissions, it is possible that the SO2 emissions were over-
estimated as well. 

In 2016, the a posteriori emission densities of CO, NOx, and SO2 in 
China were 49.2 Tg/million km2, 3.6 Tg/million km2, and 1.5 Tg/ 
million km2, respectively, whereas in South Korea the emission densities 
of CO, NOx, and SO2 were 112.6 Tg/million km2, 17.5 Tg/million km2, 
and 3.5 Tg/million km2, respectively. Thus, the emission densities in 
South Korea are 2.3 times (CO), 4.9 times (NOx), and 2.3 times (SO2) 
higher than those in China. In 2021, the a posteriori emission densities 
of CO, NOx, and SO2 in China were 32.9 Tg/million km2, 2.9 Tg/million 
km2, and 0.7 Tg/million km2, respectively, whereas in South Korea they 
were 121.0 Tg/million km2, 14.3 Tg/million km2, and 3.6 Tg/million 
km2 for CO, NOx, and SO2, respectively. As a result, the emission den-
sities of these pollutants in South Korea were 3.7 times (CO), 4.9 times 
(NOx), and 4.9 times (SO2) higher than those in China in 2021. This 
implies that recent changes in emissions in China and South Korea have 
increased the relative importance of domestic emissions control in South 
Korea, especially considering the higher population density that exposes 
more people to air pollutants. 

In terms of the spatial distribution of emissions (Fig. 6), the a pos-
teriori emissions of CO, NOx, and SO2 were all reduced in 2021 
compared to 2016 in China. Meanwhile, those in South Korea showed 
different trends depending on the pollutants: CO emissions increased in 
most provinces, but NOx emissions decreased overall. Additionally, SO2 
emissions showed increases and decreases in different provinces while 
the overall emission trend in South Korea showed little change. 

3.5. Monthly variations after the application of TEA 

Fig. 7 shows that, in 2016, a posteriori CO emissions during winter in 
China were higher than in other seasons, similar to EI. However, in 
2021, the emissions in summer were higher than those in other seasons. 
This is possibly due to Chinese emission control policies for the 
wintertime residential heating to reduce PM2.5 concentrations (Wang 
et al., 2019; Zheng et al., 2018). Meanwhile, the a posteriori CO emis-
sions in South Korea in summer have slightly increased in recent years. 

The a posteriori NOx emissions are lower than the a priori emissions 
in summer compared to spring and winter in both China and South 
Korea. Such seasonal variability of NOx emissions has also been reported 
in precedent studies (Mijling et al., 2013). Low NOx emissions during 
February in China seem to be due to factory closures and reduced vehicle 
operation during the Lunar New Year (Tan et al., 2009). In China, there 
was a significant decrease in NOx emissions from January to March 2020 
when compared with those for the same period of previous years. In 
particular, the a posteriori NOx emissions in February 2020 were 1.4 Tg/ 
month, 30 % lower than those of the same period in the previous year 
(2.0 Tg/month) (Fig. 7). This is due to the lockdown during the COVID- 
19 outbreak (Bauwens et al., 2020; Chu et al., 2021; Kim et al., 2021b). 
In February 2021, the NOx emissions returned to pre-COVID-19 levels, 
1.8 Tg/month, as reported in previous studies (Itahashi et al., 2022; Kim 
et al., 2021b; Zhang et al., 2020). In South Korea, a notable decrease in 
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NOx emissions compared with the same period of the previous year 
occurred in March 2020 and 2021. This is presumed to be attributed to 
the impact of implementing emission reduction policies, such as the 
Seasonal Management of PM2.5 during the spring and winter seasons, 
along with the enforcement of social distancing during the COVID-19 
pandemic (Kang et al., 2020; Lee et al., 2020; Son et al., 2020). 

Chinese a posteriori SO2 emissions have steadily decreased since 
2016. Moreover, the decrease in emissions is larger in the spring and 
winter seasons than in the summer season. From 2019 (i.e., P2), SO2 
emissions are high in summer and low in spring and winter, which 
contrasts with the seasonal variability of emissions in 2016. On the other 
hand, in South Korea, a posteriori SO2 emissions in summer have 
recently increased. As shown previously, CO emissions also increased in 
summer, which may be due to the increased activities of emission 
sources that emit both CO and SO2 such as coal-fired power plants. 

4. Conclusion 

In this study, a Two-step Emissions Adjustment (TEA) approach that 
adjusts upwind emissions prior to adjusting downwind emissions to 
account for the effects of LRT on air pollutants was developed. As for 
validation of the TEA approach, it was demonstrated that air quality 
simulation results with the adjusted emissions matched well with short- 
term (i.e., COVID-19) and long-term variations of CO, SO2, and NOx in 
China and South Korea during the period of 2016–2021. 

The emission reduction rates in the upwind area (i.e., China) were 
similar to those in ambient concentrations of air pollutants since self- 
contributions to the ambient concentrations are predominant in the 
upwind area. On the other hand, the TEA approach revealed that 
changes in CO and SO2 emissions in the upwind area reduced the con-
centrations in South Korea, the downwind area, by 21 % and 14 %, 
respectively, in 2021 compared to those of 2016 while the observed CO 
and SO2 concentrations in the downwind area decreased by 12 % and 36 
%, respectively, during the period. It implies that the impacts of upwind 
emissions should be considered for the air pollutants of which atmo-
spheric residence time is long enough for regional transport when 
emission conditions in a downwind area are estimated. In the case of 
NOx, the upwind emission impact was insignificant in the downwind 
area due to its relatively short residence time in the atmosphere. The 

emission reductions were more pronounced in the spring and winter 
seasons than in the summer season for both China and South Korea. This 
may result from policy implementations to manage the high PM2.5 
concentrations that frequently occur during the cold seasons. 

The TEA approach that was introduced made it possible to estimate 
changes in emissions quickly and accurately not only for downwind 
areas but also upwind areas. This methodology can also be applied in 
regions beyond Northeast Asia, especially where regional transport of 
air pollutants is significant to determine local air quality. In addition, the 
simulated concentrations based on adjusted emissions demonstrated 
greater reproducibility with the observed concentrations than those 
based on unadjusted emissions. This is because the TEA approach fol-
lows a top-down approach that estimates emissions inversely from ob-
servations. In this study, the average NMBs of simulated CO, SO2, and 
NO2 concentrations with the adjusted emissions showed significant 
improvement as follows: − 46 % → 0.3 %, 114 % → 2 %, and − 7 % → -2 
%, respectively, in China, and − 70 % → 5 %, − 19 % → 4 %, and − 12 % 
→ 7 %, respectively, in South Korea. As the simulated concentrations 
based on the adjusted emissions closely matched the observed concen-
trations, it can be expected that the adjusted emissions from the TEA 
approach can also be utilized to simulate concentrations of air pollutants 
for health risk assessments related to air pollution exposure. 

In this study, emissions were adjusted to better replicate observed 
concentrations rather than estimate actual emissions. It should be noted 
that adjusted emissions are subject to change depending on the air 
quality modeling system adopted. Therefore, instead of focusing on the 
magnitude of emissions estimated in this study, long-term trends of CO, 
NOx, and SO2 emissions were highlighted. Additionally, uncertainties 
may arise when applying this approach in boundary areas where no 
observations are available beyond the location. Discrepancies between 
observed and modeled concentrations, including boundary condition- 
induced biases, are often attributed to uncertainties in local emissions 
over the areas. In areas where obtaining ground observations is chal-
lenging, exploring alternative data sources such as satellite observations 
can be beneficial. 
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